[tex] \int\limits sin^{4} {x} \, dx [/tex]
Matematika
viviewahyu
Pertanyaan
[tex] \int\limits sin^{4} {x} \, dx [/tex]
1 Jawaban
-
1. Jawaban aliakbar20
Jadiin sebagai jawaban terbaik Yaaa
sin^4(x)
⇒[sin^2(x)]^2
⇒[(1 -cos(2x)/2)]^2
⇒1/4[1 + cos^2(2x) - 2cos(2x)]
⇒1/4[1 - 2cos(2x) + (1 + cos(4x)/2 ]
⇒(1/4) - (1/2)cos(2x) + (1/8) + (1/8)cos(4x)
⇒(3/8) - (1/2)cos(2x) + (1/8)cos(4x)
Jadi:
∫ sin^4(x) dx = 3/8∫dx - 1/2∫cos(2x) dx + 1/8∫cos(4x) dx
∫ sin^4(x) dx = (3/8)x - (1/2)sin(2x)*(1/2) + (1/8)sin(4x)*(1/4) + c
∫ sin^4(x) dx = (3/8)x - (1/4)sin(2x) + (1/32)sin(4x) + c